
Security Assessment

BackedBy - Audit
CertiK Verified on Jan 4th, 2023

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

2 Major 1 Resolved, 1 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

0 Medium
Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

0 Minor

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

2 Informational 2 Resolved

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY BACKEDBY - AUDIT

CertiK Verified on Jan 4th, 2023

BackedBy - Audit

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

DeFi

ECOSYSTEM

Ethereum

METHODS

Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 01/04/2023

KEY COMPONENTS

Subscriptions

CODEBASE
https://github.com/backedby/v1-contracts

...View All

COMMITS
b54513fd86ac4770c8b7f707c5bed7cdf72ce9d1

...View All

4
Total Findings

3
Resolved

0
Mitigated

0
Partially Resolved

1
Acknowledged

0
Declined

0
Unresolved

https://github.com/backedby/v1-contracts

TABLE OF CONTENTS BACKEDBY - AUDIT

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Review Notes

Overview

External Dependencies

Privileged Roles

Findings

BBS-01 : Incorrect handling of _ownedProfiles mapping update in `editProfile()`

CON-01 : Centralization Related Risks

BBF-01 : Lack of checks for types of token contracts accepted

BSP-01 : Logic can be consolidated for `checkUpkeep()`

Optimizations

BSP-02 : Lacks checks of input parameters decoded from input bytes data

BSP-03 : Change logic to skip irrelevant `renewIndexes`

Appendix

Disclaimer

TABLE OF CONTENTS BACKEDBY - AUDIT

CODEBASE BACKEDBY - AUDIT

Repository

https://github.com/backedby/v1-contracts

Commit

b54513fd86ac4770c8b7f707c5bed7cdf72ce9d1

CODEBASE BACKEDBY - AUDIT

https://github.com/backedby/v1-contracts

AUDIT SCOPE BACKEDBY - AUDIT

13 files audited 5 files with Acknowledged findings 8 files without findings

ID File SHA256 Checksum

BBP contracts/BBPosts.sol
8a11671818673616065fedd0586e07ca2a17d

b668499e0cddd0725a4ecba177a

BBS contracts/BBProfiles.sol
4e200f3a581df903982424063dc1f367202cb8

b3cbdea8cfde236dd421160a85

BSP contracts/BBSubscriptions.sol
b9c7cd1968db80c69a2cfff58bddabe4807a25

c0cd2fbc82ab4be531f7407336

BBF contracts/BBSubscriptionsFactory.sol
caf504cc855acabcd3859dd26259b21f22a3d4

dfa7f825415d2a278649126f5c

BBT contracts/BBTiers.sol
d80d51c2bd3b8c7c89c7a7d2ee67c9ba728b5

6b62e84ef5a01945fd979a2f6fd

BBE contracts/BBErrorsV01.sol
316b9a1bc6a0b24ef2b7d6fbe35ad47db4565

ea2f20a12025002e99f7c0f03e9

DTL contracts/DateTimeLibrary.sol
8a7ee447db7d47541b2da27ab8e8eaf245682

950af1583401628eaf8dfdde36f

IBB contracts/interfaces/IBBPermissionsV01.sol
ea3cb558b261b3728a95275bffb498512e42e

1dfa05e2060385d3fd512469c56

IBP contracts/interfaces/IBBPosts.sol
d9cb5cef2d028ad6e3855f6071c16ab4541ee

99c2a7fa4731bc783bd065a823c

IBS contracts/interfaces/IBBProfiles.sol
23bfebd1d7fd153dfbe1ca8b3c65fa3138b422

b477f74c0833b0849a3dc511bd

IBE contracts/interfaces/IBBSubscriptions.sol
5e991978c9d26df6244162f7eb8b80334fe972

e87941dc1dcb9091e2107ed27e

IBF contracts/interfaces/IBBSubscriptionsFactory.sol
6b2fc0f3c4d56476483fe499484b1474165013

fa2e0d542f1d5f05c942c821fd

IBT contracts/interfaces/IBBTiers.sol
80ad7136152a6abec5ecaa79da6e5f5ccb740

1a8ebaf64e61ef4dc0e6517c523

AUDIT SCOPE BACKEDBY - AUDIT

APPROACH & METHODS BACKEDBY - AUDIT

This report has been prepared for BackedBy to discover issues and vulnerabilities in the source code of the BackedBy -

Audit project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices.
We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS BACKEDBY - AUDIT

REVIEW NOTES BACKEDBY - AUDIT

Overview

BackedBy is a decentralized payment platform for content creators. Creators can post encrypted content to smart contracts,

and users decrypt and view content by subscribing and making monthly token payments to content creators.

External Dependencies

In BackedBy, the project relies on a few external contracts to fulfill the needs of its business logic.

Contracts

The project uses OpenZeppelin contracts and Chainlink interfaces for contract format and functionality.

The following contracts are referenced in various contracts:

OpenZeppelin

IERC20.sol , Ownable.sol

ChainLink

KeeperCompatibleInterface.sol

Oracle

IBBGasOracle

Addresses

The following addresses interact at some point with specified contracts, making them an external dependency. During the

review, no hardcoded address values were found in the codebase. All following values are initialized either at deploy time or

by specific functions in smart contracts.

BBSubscriptions.sol

_currency

BBSubscriptionsFactory.sol

_treasury , refundReceiver , IBBPermissionsV01(profileOwner)

It is assumed that these contracts or addresses are valid and non-vulnerable actors and implement proper logic to

collaborate with the current project.

REVIEW NOTES BACKEDBY - AUDIT

Privileged Roles

To set up the project correctly, improve overall project quality and preserve upgradability, the following roles are adopted in

the codebase:

_owner has the authority to set important contract parameters and contract addresses.

profileOwner has the authority to set up and edit subscription profiles and relevant fee structures.

To improve the trustworthiness of the project, dynamic runtime updates in the project should be notified to the community.

Furthermore, any plan to invoke the aforementioned functions should also be considered to move to the execution queue of

the Timelock contract.

REVIEW NOTES BACKEDBY - AUDIT

FINDINGS BACKEDBY - AUDIT

This report has been prepared to discover issues and vulnerabilities for BackedBy - Audit. Through this audit, we have

uncovered 4 issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis to

complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

BBS-01
Incorrect Handling Of _ownedProfiles

Mapping Update In editProfile()
Logical Issue Major Resolved

CON-01 Centralization Related Risks
Centralization /

Privilege
Major Acknowledged

BBF-01
Lack Of Checks For Types Of Token

Contracts Accepted
Logical Issue Informational Resolved

BSP-01
Logic Can Be Consolidated For

checkUpkeep()
Coding Style Informational Resolved

FINDINGS BACKEDBY - AUDIT

4
Total Findings

0
Critical

2
Major

0
Medium

0
Minor

2
Informational

https://accelerator.audit.certikpowered.info/project/71776fc0-2569-11ed-b002-313c195a8ef6/report/new?fid=1663621477136
https://accelerator.audit.certikpowered.info/project/71776fc0-2569-11ed-b002-313c195a8ef6/report/new?fid=1663268804569
https://accelerator.audit.certikpowered.info/project/71776fc0-2569-11ed-b002-313c195a8ef6/report/new?fid=1663639506209
https://accelerator.audit.certikpowered.info/project/71776fc0-2569-11ed-b002-313c195a8ef6/report/new?fid=1663623357921

BBS-01 INCORRECT HANDLING OF _OWNEDPROFILES MAPPING
UPDATE IN editProfile()

Category Severity Location Status

Logical Issue Major contracts/BBProfiles.sol: 97 Resolved

Description

There is an issue with the current logic for updating the _ownedProfiles mapping within the editProfile() code for the

original owner when ownership transfers occur.

The current logic sets the final index of the _ownedProfiles mapping of the original owner to the profileId of the profile

that is being set to change owners:

97 _ownedProfiles[msg.sender][_ownersTotalProfiles[msg.sender] - 1] =

_ownedProfiles[msg.sender][_ownedProfilesIndexes[msg.sender][profileId]];

This line of code overwrites the last profile index of the caller's _ownedProfiles mapping to the profile that is being

transferred to the new owner. This means that the profile that is supposed to be transferred remains in the caller's mapping

and even overwrites the caller's last active profile.

This would also have an impact when getOwnersProfiles() is run since the profileId that is being transferred is still

being shown under the previous owner in the _ownedProfiles mapping.

Recommendation

It is advised that the team review the logic for this replacement to ensure that the logic works as expected without overwriting

any valid records.

As per the project design, it seems that the intended implementation is to replace the mapping related to the profile to be

transferred with the last profile within the _ownedProfiles mapping and to remove the last index to prevent having any

empty profileId . This method will effectively remove the profile from the ownedProfiles mapping for the caller while

also adjusting the profileIds accordingly. For example,

97 _ownedProfiles[msg.sender][_ownedProfilesIndexes[msg.sender][profileId]] =

_ownedProfiles[msg.sender][_ownersTotalProfiles[msg.sender] - 1];

98 _ownedProfiles[msg.sender][_ownersTotalProfiles[msg.sender] - 1] = 0;

Alleviation

[BackedBy, 10/10/2022]: The team heeded the advice and resolved the finding in the commit hash

<6c4efc9e7ec0e7ac43a663211d62189fcbb6e2f1>. The team made the suggested changes to properly replace the

BBS-01 BACKEDBY - AUDIT

https://accelerator.audit.certikpowered.info/project/71776fc0-2569-11ed-b002-313c195a8ef6/report/new?fid=1663621477136
https://github.com/ParanoidSyntaxError/backedby/tree/eb130750de6558893269d96648f84f8e8b4813b1/contracts/BBProfiles.sol#L97-L97
https://github.com/backedby/v1-contracts/commit/6c4efc9e7ec0e7ac43a663211d62189fcbb6e2f1

transferred profile with the last profile within the _ownedProfiles mapping and subsequently cleared the final item in the

_ownedProfiles mapping to ensure that there are no empty slots within the mapping as a result of transferred profiles.

BBS-01 BACKEDBY - AUDIT

CON-01 CENTRALIZATION RELATED RISKS

Category Severity Location Status

Centralization

/ Privilege
Major

contracts/BBPosts.sol: 57, 75; contracts/BBProfiles.sol: 9

4; contracts/BBSubscriptions.sol: 278; contracts/BBSubsc

riptionsFactory.sol: 135, 202, 216, 257; contracts/BBTiers.

sol: 96, 116, 150

Acknowledged

Description

There are several privileged roles within the contracts that control access to significant administrative functions.

Owner

In the contract BBSubscriptionsFactory the role _owner has authority over the functions shown in the diagram and the

list below:

setTreasury() - Set treasury address

setSubscriptionGasRequirement() - Set the subscription gas requirement for a specific currency

Any compromise to the _owner account may allow the hacker to take advantage of this authority to set important contract

parameters.

Function Function Calls

Authenticated Role

Function State Variables

setSubscriptionGasRequirement IBBSubscriptions

_owner

setTreasury _treasury

In the contract BBSubscriptions the role _owner has authority over the functions shown in the diagram and the list below:

setSubscriptionGasRequirement() - Set the subscription gas requirement

Any compromise to the _owner account may allow the hacker to take advantage of this authority to set important contract

parameters.

Authenticated Role Function State Variables

_owner setSubscriptionGasRequirement _subscriptionGasRequirement

CON-01 BACKEDBY - AUDIT

https://accelerator.audit.certikpowered.info/project/71776fc0-2569-11ed-b002-313c195a8ef6/report/new?fid=1663268804569
https://github.com/ParanoidSyntaxError/backedby/tree/eb130750de6558893269d96648f84f8e8b4813b1/contracts/BBPosts.sol#L57-L57
https://github.com/ParanoidSyntaxError/backedby/tree/eb130750de6558893269d96648f84f8e8b4813b1/contracts/BBPosts.sol#L75-L75
https://github.com/ParanoidSyntaxError/backedby/tree/eb130750de6558893269d96648f84f8e8b4813b1/contracts/BBProfiles.sol#L94-L94
https://github.com/ParanoidSyntaxError/backedby/tree/eb130750de6558893269d96648f84f8e8b4813b1/contracts/BBSubscriptions.sol#L278-L278
https://github.com/ParanoidSyntaxError/backedby/tree/eb130750de6558893269d96648f84f8e8b4813b1/contracts/BBSubscriptionsFactory.sol#L135-L135
https://github.com/ParanoidSyntaxError/backedby/tree/eb130750de6558893269d96648f84f8e8b4813b1/contracts/BBSubscriptionsFactory.sol#L202-L202
https://github.com/ParanoidSyntaxError/backedby/tree/eb130750de6558893269d96648f84f8e8b4813b1/contracts/BBSubscriptionsFactory.sol#L216-L216
https://github.com/ParanoidSyntaxError/backedby/tree/eb130750de6558893269d96648f84f8e8b4813b1/contracts/BBSubscriptionsFactory.sol#L257-L257
https://github.com/ParanoidSyntaxError/backedby/tree/eb130750de6558893269d96648f84f8e8b4813b1/contracts/BBTiers.sol#L96-L96
https://github.com/ParanoidSyntaxError/backedby/tree/eb130750de6558893269d96648f84f8e8b4813b1/contracts/BBTiers.sol#L116-L116
https://github.com/ParanoidSyntaxError/backedby/tree/eb130750de6558893269d96648f84f8e8b4813b1/contracts/BBTiers.sol#L150-L150

Profile Owner

In the contract BBSubscriptionsFactory the role profileOwner has authority over the functions shown in the diagram

and the list below:

createSubscriptionProfile() - Set up a new subscription profile

setContribution() - Set a subscription profile's treasury contribution percentage

Any compromise to the profileOwner account may allow the hacker to take advantage of this authority to set important

contract parameters.

Function

Function CallsAuthenticated Role
Function

createSubscriptionProfile

_setContributionprofileOwner
setContribution

In the contract BBTiers the role profileOwner has authority over the functions shown in the diagram and the list below:

createTiers() - Create new tier level

editTiers() - Edit existing tier levels

setSupportedCurrencies() - Set supported ERC20 tokens for payments

Any compromise to the profileOwner account may allow the hacker to take advantage of this authority to set important

contract parameters.

Authenticated Role

Function

Function Calls

Function

Function Calls

Function

profileOwner

editTiers

createTiers

setSupportedCurrencies

_setTiers

_setSupportedCurrencies

In the contract BBPosts the role profileOwner has authority over the functions shown in the diagram and the list below:

CON-01 BACKEDBY - AUDIT

createPost() - Create a new post

editPost() - Edit existing post variables

Any compromise to the profileOwner account may allow the hacker to take advantage of this authority to create and edit

posts.

Authenticated Role

Function

Function
profileOwner

createPost

editPost

In the contract BBProfiles the role profileOwner has authority over the functions shown in the diagram and the list

below:

editProfile() - Edit existing profile variables

Any compromise to the profileOwner account may allow the hacker to take advantage of this authority to edit profiles.

Authenticated Role Function Function Calls

profileOwner editProfile Profile

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. The client is advised to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, it is strongly

recommended that centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-

contract-based accounts with enhanced security practices, e.g., multisignature wallets.
Indicatively, here are some feasible

suggestions that would also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

CON-01 BACKEDBY - AUDIT

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[BackedBy, 12/20/2022]: The team updated the roles for the BBSubscriptionsFactory in commit hash

<b54513fd86ac4770c8b7f707c5bed7cdf72ce9d1>.

In order to reduce the risk of a single address being compromised, the _owner role has been split into the following roles:

_treasuryOwner - has the authority to run setTreasuryOwner() & setTreasury()

_gasOracleOwner - has the authority to run setGasOracleOwner() & setGasOracle()

_subscriptionFeeOwner - has the authority to run setSubscriptionFeeOwner() & setSubscriptionFee()

The _owner role was also removed from the BBSubscriptions contract since gas prices are extracted from gas price

oracles instead.

CON-01 BACKEDBY - AUDIT

https://github.com/backedby/v1-contracts/commit/b54513fd86ac4770c8b7f707c5bed7cdf72ce9d1

It is important to note that these roles are initially set to the deployer address through the constructor() at deployment and

requires the individual setting up of the addresses at a later point in time through the running of setter functions.

In terms of the profileOwner the BackedBy team explained that these roles were assumed and controlled by the users of

the BB contract to allow them to responsible for their own security/decentralization.

[CertiK, 01/03/2023]: The splitting of privileged roles can avoid a single-point failure to some extent, however it is highly

recommended to adopt a multi-sig wallet solution.

CON-01 BACKEDBY - AUDIT

BBF-01 LACK OF CHECKS FOR TYPES OF TOKEN CONTRACTS
ACCEPTED

Category Severity Location Status

Logical Issue Informational contracts/BBSubscriptionsFactory.sol: 96 Resolved

Description

The design currently allows anyone to run the deploySubscriptions() function and set a subscription to allow any valid

currency contract address. This might allow attackers to use malicious contracts included as a currency contract.

Recommendation

Recommend that a whitelist of accepted token contract addresses be included so that malicious token contracts which might

negatively impact the platform cannot be included and used.

Alleviation

[BackedBy, 10/10/2022] The team decided to leave the code as is and provided the following explanation.

The architecture of the BackedBy subscriptions payments is designed to allow any ERC20 standard token to be supported.

The BackedBy team has reduced the risk of code injected into the transfer() , or transferFrom() function of an ERC20

token being used maliciously, by deploying a separate BBSubscriptions contract for each ERC20 token, which do not

interact with each other.

Since users have to opt-in to each BBSubscriptions contract, if a user only uses BBSubscriptions contracts associated

with well known ERC20 tokens, with standard transfer() and transferFrom() functions, there is no risk of any sort of

exploit.

In production, the frontend will only support a handful of audited, and well-known ERC20 tokens for subscription payments.

The team did not want developers building their own frontend to be forced into using only certain approved tokens.

[CertiK, 01/03/2023] The team confirmed that when deploying token contracts, the team will only support a handful of

audited and well-known ERC20 tokens for subscription payments. The tokens serve as an external dependency outside the

current audit scope.

BBF-01 BACKEDBY - AUDIT

https://accelerator.audit.certikpowered.info/project/71776fc0-2569-11ed-b002-313c195a8ef6/report/new?fid=1663639506209
https://github.com/ParanoidSyntaxError/backedby/tree/eb130750de6558893269d96648f84f8e8b4813b1/contracts/BBSubscriptionsFactory.sol#L96-L96

BSP-01 LOGIC CAN BE CONSOLIDATED FOR checkUpkeep()

Category Severity Location Status

Coding Style Informational contracts/BBSubscriptions.sol: 160~171, 178~190 Resolved

Description

The two loops within function checkUpKeep() are essentially looping through the same values twice.

Recommendation

Recommend combining the two loops into one to save on gas and improve readability of code. The code should loop

through all the values just once and return the appropriate values based on the results.

uint256 renewalIndex;

for(uint256 i; i < checkLength; i++) {

 uint256 subscriptionIndex = lowerBound + i;

 // If subscription has expired, add the subscription ID to the array of

IDs to renew

 if(_subscriptions[subscriptionIndex].expiration < block.timestamp &&

_subscriptions[subscriptionIndex].cancelled == false) {

 renewIndexes[renewalIndex] = subscriptionIndex;

 renewalIndex++;

 }

}

// If subscriptions to renew is zero or less than minimum required renewals, return

false

if(renewalIndex == 0 || renewalIndex < minRenews) {

 return (false, "");

}

return (true, abi.encode(renewIndexes, refundReceiver));

Alleviation

[BackedBy, 10/10/2022]: The team heeded the advice and resolved the finding in the commit hash

<6c4efc9e7ec0e7ac43a663211d62189fcbb6e2f1>. The checkUpkeep() renewal check logic has been consolidated, and a

loop to resize the renewal indexes array has been added.

BSP-01 BACKEDBY - AUDIT

https://accelerator.audit.certikpowered.info/project/71776fc0-2569-11ed-b002-313c195a8ef6/report/new?fid=1663623357921
https://github.com/ParanoidSyntaxError/backedby/tree/eb130750de6558893269d96648f84f8e8b4813b1/contracts/BBSubscriptions.sol#L160-L171
https://github.com/ParanoidSyntaxError/backedby/tree/eb130750de6558893269d96648f84f8e8b4813b1/contracts/BBSubscriptions.sol#L178-L190
https://github.com/backedby/v1-contracts/commit/6c4efc9e7ec0e7ac43a663211d62189fcbb6e2f1

OPTIMIZATIONS BACKEDBY - AUDIT

ID Title Category Severity Status

BSP-02
Lacks Checks Of Input Parameters Decoded From Input

Bytes Data

Logical

Issue
Optimization Resolved

BSP-03 Change Logic To Skip Irrelevant renewIndexes
Coding

Style
Optimization Resolved

OPTIMIZATIONS BACKEDBY - AUDIT

https://accelerator.audit.certikpowered.info/project/71776fc0-2569-11ed-b002-313c195a8ef6/report/new?fid=1663640708171
https://accelerator.audit.certikpowered.info/project/71776fc0-2569-11ed-b002-313c195a8ef6/report/new?fid=1663647389167

BSP-02 LACKS CHECKS OF INPUT PARAMETERS DECODED
FROM INPUT BYTES DATA

Category Severity Location Status

Logical Issue Optimization contracts/BBSubscriptions.sol: 91, 147 Resolved

Description

For both functions checkUpkeep() and performUpkeep() there is no checking of the parameters decoded from the input

data. Specifically for sensitive information like the renewIndexes and refundReceiver addresses, it would be useful to

have a check to ensure that valid input values have been submitted into the function.

Recommendation

Recommend including checks with the functions to check that the input parameters are correct.

In the case of refundReceiver , a whitelist can be made to ensure that only registered addresses are able to receive funds

and incoming input parameters can check with that list to ensure that legitimate addresses have been used for this value.

For renewIndexes , checks can be added within the logic to check that only valid entries are used, perhaps by adding

require statements checking that profileId and tierId have been populated within the

_subscriptions[renewIndexes[i]] entry as well.

Alleviation

[BackedBy, 10/10/2022]: The team heeded the advice and resolved the finding in the commit hash

<3ea261df8a532b4b3d86bb53324ffac6a202879e>. The team included a check to ensure that the inputted

renewIndexes[i] falls within the range of used subscription IDs.

In terms of the refundReceiver treatment, the team explained that the gas refund is designed to incentivize users to call

the performUpkeep() function and keep subscription payments being made, therefore the refundReceiver must allow

any address set by the function caller.

BSP-02 BACKEDBY - AUDIT

https://accelerator.audit.certikpowered.info/project/71776fc0-2569-11ed-b002-313c195a8ef6/report/new?fid=1663640708171
https://github.com/ParanoidSyntaxError/backedby/tree/eb130750de6558893269d96648f84f8e8b4813b1/contracts/BBSubscriptions.sol#L91-L91
https://github.com/ParanoidSyntaxError/backedby/tree/eb130750de6558893269d96648f84f8e8b4813b1/contracts/BBSubscriptions.sol#L147-L147
https://github.com/backedby/v1-contracts/commit/3ea261df8a532b4b3d86bb53324ffac6a202879e

BSP-03 CHANGE LOGIC TO SKIP IRRELEVANT renewIndexes

Category Severity Location Status

Coding Style Optimization contracts/BBSubscriptions.sol: 95~96 Resolved

Description

The current logic for performUpKeep() might result in the function reverting after a series of updates and payments, which

will be a waste of gas, and updates will need to be executed again from the beginning.

The issue is mainly related to the two require statements as shown below:

95 require(_subscriptions[renewIndexes[i]].expiration < block.timestamp,

BBErrorCodesV01.SUBSCRIPTION_NOT_EXPIRED);

96 require(_subscriptions[renewIndexes[i]].cancelled == false,

BBErrorCodesV01.SUBSCRIPTION_CANCELLED);

Recommendation

Recommend replacing the require statements with if statements and implementing a method to skip (and perhaps record)

any skipped entries to prevent the function from reverting after a series of updates and payments have been made. This will

improve the flow of the function and reduce the gas used when incorrect input data causes the function to fail.

An edge case that could cause the function to fail is when a user runs the subscribe() function for a valid expired

subscription while or just before the performUpKeep() function is run. The addition of a skipping mechanism would ensure

that all other entries are successfully updated.

Alleviation

[BackedBy, 10/10/2022]: The team heeded the advice and resolved the finding in the commit hash

<6c4efc9e7ec0e7ac43a663211d62189fcbb6e2f1>. The team replaced require statements with if statements as

recommended. The team also updated the gas refunded handling to a mechanism based on the number of indexes

renewed or cancelled.

BSP-03 BACKEDBY - AUDIT

https://accelerator.audit.certikpowered.info/project/71776fc0-2569-11ed-b002-313c195a8ef6/report/new?fid=1663647389167
https://github.com/ParanoidSyntaxError/backedby/tree/eb130750de6558893269d96648f84f8e8b4813b1/contracts/BBSubscriptions.sol#L95-L96
https://github.com/backedby/v1-contracts/commit/6c4efc9e7ec0e7ac43a663211d62189fcbb6e2f1

APPENDIX BACKEDBY - AUDIT

Finding Categories

Categories Description

Centralization

/ Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Logical Issue
Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Coding Style
Coding Style findings usually do not affect the generated byte-code but rather comment on how to

make the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX BACKEDBY - AUDIT

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with

the Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL

WARRANTIES ARISING FROM COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE

FOREGOING, CERTIK MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE

ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE

USE THEREOF, WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE,

ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE

DISCLAIMER BACKEDBY - AUDIT

FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY

KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE

COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE, APPLICATIONS, SYSTEMS OR SERVICES, OPERATE

WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR

THAT ANY ERRORS OR DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME

NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER BACKEDBY - AUDIT

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

BackedBy - Audit Security Assessment CertiK Verified on Jan 4th, 2023 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

